
© 2018 Arm Limited

Ryan Hulguin

ryan.hulguin@arm.com

HPC Senior Applications Engineer

Debugging and
Profiling HPC
Applications

ATPESC

August 7, 2019

© 2018 Arm Limited2

Agenda

ÅGeneral Debugging and Profiling Advice

ÅArm Software for Debugging and Profiling

ÅDebugging with DDT

ÅProfiling with MAP

ÅTheta Specific Settings

© 2018 Arm Limited3

Debugging

Transforming a broken program to a working one

How? TRAFFIC!

ÅTrack the problem

ÅReproduce

ÅAutomate - (and simplify) the test case

ÅFind origins ςǿƘŜǊŜ ŎƻǳƭŘ ǘƘŜ άƛƴŦŜŎǘƛƻƴέ ōŜ ŦǊƻƳΚ

ÅFocus ςexamine the origins

ÅIsolate ςnarrow down the origins

ÅCorrect ςfix and verify the test case is successful

© 2018 Arm Limited4

Profiling
Profiling is central to understanding and improving application performance.

No

No

Profile
Yes

Yes

Yes

Refine the
Profile

File I/O

Memory

CPU

No

No

Buffers, data formats,
in-memory filesystems

Collectives, blocking,
non-blocking, topology,

load balance

Bandwidth/latency,
cache utilization

Vectors, branches,
integer, floating point

Yes

Identify Hotspots Focus Optimization

50x

10x

5x

2x

Communication

© 2018 Arm Limited5

Performance Improvement Workflow

Get a realistic
test case

Profile your
code

Look for the
significant

What is the
nature of the

problem?

Apply brain to
solve

Think of the
future

© 2018 Arm Limited

Arm Software

© 2018 Arm Limited7

Arm Forge
An interoperable toolkit for debugging and profiling

The de-facto standard for HPC development
ÅAvailable on the vast majority of the Top500 machines in the world
ÅFully supported by Arm on x86, IBM Power, Nvidia GPUs, etc.

State-of-the art debugging and profiling capabilities
ÅPowerful and in-depth error detection mechanisms (including memory debugging)
ÅSampling-based profiler to identify and understand bottlenecks
ÅAvailable at any scale (from serial to parallel applications running at petascale)

Easy to use by everyone
ÅUnique capabilities to simplify remote interactive sessions
ÅInnovative approach to present quintessential information to users

Very user-friendly

Fully Scalable

Commercially supported
by Arm

© 2018 Arm Limited8

Run and ensure application correctness
Combination of debugging and re-compilation

Å Ensure application correctness with Arm DDT scalable debugger
Å Integrate with continuous integration system.
Å Use version control to track changes and leverage ForgeΩs built-in VCS support.

Examples:
$> ddt -- offline mpirun Ƶn 48 ./example
$> ddt mpirun Ƶn 48 ./example

© 2018 Arm Limited9

Visualizethe performanceof your application

Å Measure all performance aspects with Arm MAP parallel profiler
Å Identify bottlenecks and rewrite some code for better performance

Examples:
$> map -- profile mpirun Ƶn 48 ./example

© 2018 Arm Limited

Debugging with DDT

© 2018 Arm Limited11

Arm DDT ïThe Debugger

Who had a rogue behaviour ?

ÅMerges stacks from processes and threads

Where did it happen?

Åleaps to source

How did it happen?

ÅDiagnostic messages

ÅSome faults evident instantly from source

Why did it happen?

Å¦ƴƛǉǳŜ ά{ƳŀǊǘ IƛƎƘƭƛƎƘǘƛƴƎέ

ÅSparklinescomparing data across processes

Run

with Arm tools

Identify
a problem

Gather info
Who, Where, How,

Why

Fix

© 2018 Arm Limited12

Preparing Code for Use with DDT

As with any debugger, code must be compiled with the debug flag typically - g

It is recommended to turn off optimization flags i.e. ïO0

Leaving optimizations turned on can cause the compiler to optimize out some variables and
even functions making it more difficult to debug

© 2018 Arm Limited13

Segmentation Fault

In this example, the application crashes with a segmentation error outside of DDT.

What happens when it runs under DDT?

© 2018 Arm Limited14

Segmentation Fault in DDT

DDT takes you to the exact line where Segmentation fault occurred, and you can pause and
investigate

© 2018 Arm Limited15

Invalid Memory Access

The array tab is a 13x13 array, but the application is trying to write a value to tab(4198128,0)
which causes the segmentation fault.

i is not used, and x and y are not initialized

© 2018 Arm Limited16

It works é Well, most of the time

A strange behaviour where the
ŀǇǇƭƛŎŀǘƛƻƴ άǎƻƳŜǘƛƳŜǎέ ŎǊŀǎƘŜǎ ƛǎ ŀ
typical sign of a memory bug

Arm DDT is able to force the crash
to happen

ωI am buggy
ANDnot
buggy. How
about that?

SCHRODIN
BUG !

© 2018 Arm Limited17

Advanced Memory Debugging

